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This talk:

1 a two-step general dynamic factor procedure to estimate the common return
and volatility factors from a large panel (a high-dimensional time series) of
stock returns

2 yielding one-step-ahead conditional quantiles (VaRs) and prediction intervals
for returns;

3 yielding a detailed analysis (impulse response functions etc.) of the
propagation of market volatility shocks across returns;

4 the approach is non-parametric and model-free;

5 comparison with more standard parametric GARCH-type methods.
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Motivation:

Typically, parametric Value at Risk measures are built using parametric
estimates of the volatility of returns
Francq and Zakoian, 2010;

but parametric multivariate volatility models in high (also moderate)
dimensions run into severe curse of dimensionality problems.
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Motivation:

Typically, Values at Risk and prediction intervals are built from parametric
estimates of the volatility of returns
Francq and Zakoian, 2010;

but parametric multivariate volatility models in high (also moderate)
dimensions run into severe curse of dimensionality problems;

Factor models decompose a high-dimensional time series (typically, in this
context, returns) into a common component driven by a small number of
market (common) shocks and an idiosyncratic component which is only
mildly cross-correlated;

but being entirely (unconditional) covariance-based, a factor model for
returns does not tell us anything about volatilities.
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Motivation:

Typically, Value at Risk measures are estimated by fitting some some
parametric volatility models on observed returns
Francq and Zakoian, 2010;

but parametric multivariate volatility models in high (also moderate)
dimensions run into severe curse of dimensionality problems;

Factor models decompose returns into a common, market-driven,
component and an idiosyncratic one, turning the curse of dimensionality
into a blessing;

but being entirely (unconditional) covariance-based, factor models do not
say anything about volatilities;

... combining these approaches sounds like a good idea ...
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A very natural way is the one adopted in a variety of “Factor-GARCH" methods:

Run a Dynamic Factor Model step on the high-dimensional series of returns,
disentangling the common and idiosyncratic components of returns;

extract the low-dimensional shocks driving the common component of
returns;

perform a parametric GARCH-type analysis of those common shocks (no
curse of dimensionality).
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The idea at first sight looks simple and natural. It is based on the postulate

common volatility shock (market volatility shock)
= shock to the volatility of the common components of returns
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This simple and natural idea boils down to defining “market risk" as the risk
associated with the market-driven component of returns (the common
components):

market risk := risk of the market-driven component of returns

This approach is quite common—see, for instance, Fan, Liao, and Shi (2013)
where the “market risk" is defined as the covariance matrix ΣΣΣcommon = Cov(X) of
the common component (in a low rank + sparse context).

How reasonable is that idea?
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Volatility of common component of returns
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Volatility of idiosyncratic component of returns
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idiosyncratic component volatility has the same magnitude as common
component volatility

idiosyncratic component volatility and common component volatility
obviously strongly comove ... hence idiosyncratic component volatility is not
idiosyncratic! market volatility shocks are impacting the level-idiosyncratic
components as much as they do the level-common ones

Not a big surprise: the decomposition between level-common and
level-idiosyncratic indeed is based on the autocovariance structure of levels
only, which carries no information on volatilities.

Actually, the empirical evidence of a factor model structure for
log-volatilities is as strong as for the factor model structure of the returns
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Dynamic factor structure of returns
scree-plot of eigenvalues of long-run covariance matrix of returns
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Dynamic factor structure of log-volatilities
scree-plot of eigenvalues of long-run covariance matrix of log-volatilities
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See Herskovic, Kelly, Lustig, Van Nieuwerburgh (2016) for further evidence.

This strongly suggests considering the two-step approach we now describe.
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A two-step GDFM approach

Consider an n × T panel of stock returns (or levels)

Ynt = {Yit |i = 1, . . . n, t = 1, . . . ,T}

a finite realization of the stochastic process {Yit |i ∈ N, t ∈ Z}.

To capture all interdependencies in Yn parametric methods are quite helpless:

curse of dimensionality!

If n ∼ 100 we need about 104 parameters for linear dependencies only, plus (at
least) another 104 parameters necessary for modelling, e.g., dependencies in the
squares (volatility) ...
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Factor model methods allow for dimension reduction in returns:

Ynt = Xnt︸︷︷︸
common

+ Znt︸︷︷︸
idiosyncratic

1 Xnt driven by q � n factors, reduced rank spectral density;

2 Znt has n components which are only weakly cross-correlated.

As n→∞, Xnt and Znt are identified by means of adequate (dynamic)
cross-sectional averaging:

blessing of dimensionality!

Therefore, (n,T )-asymptotics are considered throughout.
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A “divide and rule" strategy:

–Being reduced rank, the series of common components somehow can be
handled as a low-dimensional series—in particular, the (low-dimensional)
common shocks can be recovered and fundamental representations of
the Xit ’s can be estimated

–Being only mildly cross-correlated, the n-dimensional series of idiosyncratic
components Zit can be handled, without much loss, as n univariate
(auto-correlated but not cross-correlated) series. In particular, univariate AR
fits and a global VAR fit roughly produce the same residuals

The GDFM decomposition (contrary to the static factor model) is a
representation result—not really a statistical model
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Let the returns admit the GDFM representation (encompasses all other factor
models considered in the literature)

Yit − E[Yit ] = Xit + Zit =

q∑
j=1

∞∑
k=0

bijkujt−k +
∞∑
k=0

dikvit−k

or
Ynt − E[Ynt ] = Xnt + Znt = Bn(L)ut︸ ︷︷ ︸

common

+ Dn(L)vnt︸ ︷︷ ︸
idiosyncratic

such that

L1 ut is 2nd-order q-dim white noise, zero mean, with diagonal covariance;

L2 Bn(L) is rational and has absolutely summable coefficients;

L3 the q spectral eigenvalues of Xnt diverge linearly in n (a reduced-rank
spectrum);
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q∑
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k=0

bijkujt−k +
∞∑
k=0

dikvit−k

or
Ynt − E[Ynt ] = Xnt + Znt = Bn(L)ut︸ ︷︷ ︸

common

+ Dn(L)vnt︸ ︷︷ ︸
idiosyncratic

such that

L4 vnt is 2nd-order n-dim white noise, zero mean, with p.d. covariance, and
such that its largest eigenvalue is bounded uniformly in n;

L5 E[vit |vis ] = 0 for all i and t > s;

L6 Dn(L) diagonal, and has absolutely summable coefficients; di (L) = c−1
i (L)

with ci (L) of finite order and ci (z) 6= 0 for |z | ≤ 1, i.e. ci (L)Zit = vit ;

L7 the largest spectral eigenvalue of Znt is bounded uniformly in n
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Let the returns admit the GDFM representation (encompasses all other factor
models considered in the literature)
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q∑
j=1

∞∑
k=0

bijkujt−k +
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or
Ynt − E[Ynt ] = Xnt + Znt = Bn(L)ut︸ ︷︷ ︸

common

+ Dn(L)vnt︸ ︷︷ ︸
idiosyncratic

such that

L8 Cov(ujt , vis) = 0 for any i , j , t, s;

L9 ut and vnt have finite fourth-order cumulants.
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Let the returns admit the GDFM representation (encompasses all other factor
models considered in the literature)

Yit − E[Yit ] = Xit + Zit =

q∑
j=1

∞∑
k=0

bijkujt−k +
∞∑
k=0

dikvit−k

or
Ynt − E[Ynt ] = Xnt + Znt = Bn(L)ut︸ ︷︷ ︸

common

+ Dn(L)vnt︸ ︷︷ ︸
idiosyncratic

such that
in terms of the observed Yit ’s,

the q largest spectral eigenvalues of Ynt diverge linearly in n;

the (q + 1)-th largest spectral eigenvalue of Ynt is bounded uniformly in n.
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Alternative representation (Forni, Hallin, Lippi, and Zaffaroni, 2015, 2017)

(In − An(L)) (Ynt − E[Ynt ]) = Hnut + (In − An(L))Znt

An(L) is a block-diagonal matrix of one-sided finite-order filters, with blocks
of size (q + 1);

Z∗nt := (In − An(L))Znt is idiosyncratic;

Hn is n × q with rank q;

ent := Hnut is 2nd-order n-dim white noise, zero mean, with rank q
covariance.

We assume

L10 H′nHn/n→ Iq, as n→∞.

Then, the q largest eigenvalues of the covariance of ent diverge linearly in n.

A static factor model for (In − An(L)) (Ynt − E[Ynt ]).
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To compute volatilities we need:

(i) the innovations of Yit

(ii) a non-linear transformation thereof.

Innovations:

(i.a) the components eit of ent (recall ent := Hnut) are the innovations of the
common component of returns;

(i.b) the components vit of vnt are the innovations of the idiosyncratic component
of returns;

(i.c) since common and idiosyncratic components are mutually orthogonal (all
leads and lags), let sit := eit + vit .

As a proxy for log-volatilities, define (Engle and Marcucci, 2006)

hit := log{(sit)2};

we assume that

V0 |sit | > 0 almost surely for all i , t.
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The log-volatilities hit admit a GDFM representation:

hit − E[hit ] = χit + ξit =
Q∑
j=1

∞∑
k=0

fijkεjt−k +
∞∑
k=0

gikνit−k

or
hnt − E[hnt ] = χnt︸︷︷︸

common

+ ξnt︸︷︷︸
idiosyncratic

= Fn(L)εt︸ ︷︷ ︸
common

+ Gn(L)νnt︸ ︷︷ ︸
idiosyncratic

such that

V1 εt is 2nd-order Q-dim white noise, zero mean, with diagonal covariance;

V2 Fn(L) is rational and has absolutely summable coefficients;

V3 the Q largest spectral eigenvalues of χnt diverge linearly in n;
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V4 νnt is 2nd-order n-dim white noise, zero mean, with p.d. covariance, and
such that its largest eigenvalue is bounded uniformly in n;

V5 E[νit |νis ] = 0 for all i and t > s;

V6 Gn(L) diagonal, and has absolutely summable coefficients;

V7 gi (L) = p−1
i (L) with pi (L) of finite order and pi (z) 6= 0 for |z | ≤ 1, i.e.
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= Fn(L)εt︸ ︷︷ ︸
common

+ Gn(L)νnt︸ ︷︷ ︸
idiosyncratic

such that

the largest spectral eigenvalue of ξnt is bounded for any n;

the Q largest spectral eigenvalues of hnt diverge linearly in n;

the (Q + 1)-th largest spectral eigenvalue of hnt is bounded uniformly on n.
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Alternative representation (Forni, Hallin, Lippi, and Zaffaroni, 2015, 2017)

(In −Mn(L)) (hnt − E[hnt ]) = Rnεt + (In −Mn(L)) ξnt

Mn(L) a block diagonal matrix of one-sided finite-order filters, with blocks
of size (Q + 1);

ξ∗nt := (In −Mn(L)) ξnt is idiosyncratic;

Rn is n × Q with rank Q.

We assume (an identification constraint )

V10 R′nRn/n→ IQ as n→∞.

Then, the Q largest eigenvalues of the covariance of Rnεnt diverge linearly in n.

A static factor model for (In −Mn(L)) (hnt − E[hnt ]).
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Summary of the model for levels

Yit = E[Yit ] + eit +
∞∑
k=1

b′ikut−k︸ ︷︷ ︸
Xit|t−1

+vit +
∞∑
k=1

dikvit−k︸ ︷︷ ︸
Zit|t−1

=: Yit|t−1 + sit

Summary of the model for log-volatilities hit = log s2
it

hit = E[hit ] + f ′i0εt +
∞∑
k=1

f ′ikεt−k︸ ︷︷ ︸
χit|t−1

+νit +
∞∑
k=1

gikνit−k︸ ︷︷ ︸
ξit|t−1

=: hit|t−1 + ωit

Combining the two,

sit = exp(hit|t−1/2)︸ ︷︷ ︸
=:sit|t−1

exp(ωit/2)sign(sit)︸ ︷︷ ︸
=:wit
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hence

Yit = Yit|t−1 + sit = Yit|t−1 + sit|t−1wit

The lower and upper prediction bounds with confidence level (1− α) ∈ (0, 1) are

Lit|t−1(α) = Yit|t−1 + sit|t−1 q(α;wi )

Uit|t−1(α) = Yit|t−1 + sit|t−1 q(1− α;wi )

where q(α;wi ) stands for the α-quantile of wit .
The equal-tails prediction interval with coverage probability (1− α) is

Iit|t−1(α) = [Lit|t−1(α/2),Uit|t−1(α/2)]

Unequal-tails prediction intervals are also possible.
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Estimation

The decomposition

(In − An(L)) (Ynt − E[Ynt ]) =: ent + Z∗nt

is a static factor model representation for Y∗nt := (In − An(L)) (Ynt − E[Ynt ])

Estimation in a nutshell

Spectral density matrix of Xnt by dynamic PCA from spectral density of Ynt ;

Autocovariances of Xnt by inverse Fourier transform;

Yule-Walker equations on VARs of dimension (q + 1) to get Ân(L);

static PCA on (In − Ân(L))Ynt to get ênt and Ẑnt ;

univariate AR on Ẑit to get ĉi (L) and v̂it ;

estimate the GDFM of ĥit = log(êit + v̂it)
2 as before;

q and Q via information criteria on spectral eigenvalues (Hallin and Liška, 2007)
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We add the assumptions:

KL BT = o(
√
T ), i.e. the bandwidth for estimating the spectrum of Yn;

KV MT = o(
√
T ), i.e. the bandwidth for estimating the spectrum of hn;

TL ut is sub-exponential and w ′nZnt is sub-exponential for ‖wn‖ = 1;

TV εt is sub-exponential and w ′nξnt is sub-exponential for ‖wn‖ = 1.

ERG {wit} is ergodic

By TL and TV all common and idiosyncratic components are sub-exponential

P(|ujt | > ε) ≤ K1 exp(−εK2), j = 1, . . . , q.

Results can be generalized to sub-Weibull

P(|ujt | > ε) ≤ K1 exp(−εϑK2), ϑ > 0, j = 1, . . . , q.

For ϑ < 1 we can account for extreme events.
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The estimated model is

Yit − Ȳi =
k̄1∑
k=0

b̂′ik ût−k +
k̄2∑
k=0

d̂ik v̂it

Proposition 1. Let ρnT = max(BT/
√
T , 1/BT , 1/

√
n), then (under

Assumptions: see the paper), under n = O(T ζ) for some 0 < ζ <∞ as
n,T →∞, there exists a q × q diagonal matrix J with entries ±1, such that

(a) maxi ‖b̂ik − Jbik‖ = OP(ρnT ), for all k ≤ k̄1;

(b) maxt ‖ût − Jut‖ = OP(ρnT logT );

(c) maxi |d̂ik − dik | = OP(ρnT logT ), for all k ≤ k̄2;

(d) maxi maxt |v̂it − vit | = OP(ρnT logT ).
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Let ŝit := êit + v̂it . For some κT > 0, define the capped estimated log-volatility as

ĥit := log(ŝ 2
it )I(|ŝit | ≥ κT ) + log κ2

T I(|ŝit | < κT ).

Assume that this capping is such that

R κT > 0 and the set

T̂T := {t ∈ {1, . . . ,T} | |ŝit | < κT , for all i ∈ {1, . . . , n}}

has cardinality |T̂T | = oP(
√
T ) as T →∞.

Capping is bounding s2
it away from zero, robustifying their log-transforms; κT = 0

works in practice, though.

Simulation-based results show that we can choose κT � log−α T , with α > 0.
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The estimated model is

ĥit −
¯̂
hi =

k̄∗1∑
k=0

f̂ ′ik ε̂t−k +

k̄∗2∑
k=0

ĝik ν̂it

Proposition 2. Let τnT = max(BTMT/
√
T ,MT/

√
n), then, under Assumptions

in the paper, and if n = O(T ζ) for some finite ζ > 0 as n,T →∞, there exists a
Q × Q diagonal matrix S with entries ±1, s.t.

(a) maxi ‖f̂ik − Sfik‖ = OP(τnT log1+α T ), for all k ≤ k̄∗1 ;

(b) maxt ‖ε̂t − Sεt‖ = OP(τnT log2+α T );

(c) maxi |ĝik − gik | = OP(τnT log2+α T ), for all k ≤ k̄∗2 ;

(d) maxi maxt |ν̂it − νit | = OP(τnT log2+α T ).
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Prediction

Once we have estimated the model, we can compute

1 the one-step-ahead predictions ŶiT+1|T and ŝiT+1|T = exp(ĥiT+1|T );

2 the historical innovations ŵit for t = 1, . . . ,T .

Denote by ŵi(1), ..., ŵi(T ) the order statistic of ŵi1, ..., ŵiT .
Then ŵi(dTαe) is the empirical counterpart of q(α;wi ).

Empirical versions of prediction limits and intervals are

L̂iT+1|T (α) = ŶiT+1|T + ŝiT+1|T ŵi(dTαe)

ÛiT+1|T (α) = ŶiT+1|T + ŝiT+1|T ŵi(dT (1−α)e)

ÎiT+1|T (α) =
[
L̂iT+1|T (α/2), ÛiT+1|T (α/2)

]

Consistent as soon as the hit ’s are ergodic
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Data

n = 90 daily returns of stocks;

from 4/1/2000 to 30/9/2013, T = 3456 observations;

pseudo-out-of-sample forecasting:

estimating the model using t = 1, . . . , τ ;
τ = (T −M), . . . , (T − 1) and M = 1948;
evaluation period 3/1/2006 to 27/9/2013.

number of factors for levels q = 3 and for log-volatilities Q = 2;

bandwidth BT = 2 and MT = 17;

capping constant κT ∈ {0, 0.1, 0.25, 0.5};

compute quantiles using (ŵiτ−`+1, ..., ŵiτ ), with ` ∈ {126, 252, 504, τ};

α ∈ {0.32, 0.2, 0.1, 0.05, 0.01}.
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AMZN: Amazon; WAG: Walgreens; XOM: Exxon Mobil;
AIG: America International Group
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Table: Average estimated coverage - GDFM

κT = 0
(1− α)

0.68 0.8 0.9 0.95 0.99
` = 126 0.6709 0.7894 0.8887 0.9400 0.9812
` = 252 0.6708 0.7903 0.8902 0.9415 0.9848
` = 504 0.6711 0.7895 0.8895 0.9412 0.9846
` = τ 0.7010 0.8142 0.9049 0.9506 0.9881

κT = 0.1
(1− α)

0.68 0.8 0.9 0.95 0.99
` = 126 0.6874 0.7985 0.8931 0.9416 0.9813
` = 252 0.6882 0.7999 0.8940 0.9424 0.9846
` = 504 0.6886 0.7995 0.8929 0.9419 0.9843
` = τ 0.7187 0.8244 0.9096 0.9523 0.9881

κT = 0.25
(1− α)

0.68 0.8 0.9 0.95 0.99
` = 126 0.7126 0.8141 0.8997 0.9452 0.9821
` = 252 0.7138 0.8143 0.9009 0.9452 0.9851
` = 504 0.7149 0.8150 0.9002 0.9449 0.9846
` = τ 0.7430 0.8387 0.9162 0.9551 0.9886
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Table: Average estimated coverage - univariate GARCH(1,1)s

(1− α)
0.68 0.8 0.9 0.95 0.99

` = 126 0.6755 0.7947 0.8933 0.9429 0.9834
` = 252 0.6786 0.7981 0.8968 0.9460 0.9871
` = 504 0.6807 0.7994 0.8983 0.9479 0.9878
` = τ 0.6920 0.8077 0.9036 0.9510 0.9897
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Testing for identical coverage probability of GDFM and GARCH (McNemar, 1947).

Table: Proportions of rejections in favour of a better GDFM coverage (left-hand
panel), in favour of a better GARCH coverage (right-hand panel). Significance
level δ. Capping κT = 0.25.

better GDFM coverage better GARCH coverage
α = 0.1 δ = 0.1 δ = 0.05 δ = 0.01 δ = 0.1 δ = 0.05 δ = 0.01
` = 126 0.60 0.54 0.37 0.10 0.08 0.07
` = 252 0.53 0.46 0.29 0.13 0.12 0.09
α = 0.05 δ = 0.1 δ = 0.05 δ = 0.01 δ = 0.1 δ = 0.05 δ = 0.01
` = 126 0.41 0.28 0.16 0.11 0.08 0.06
` = 252 0.26 0.20 0.06 0.18 0.12 0.11
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Backtesting (Christoffersen, 1998)

1 Define the hit-sequence: Ĥiτ+1|τ (α) = I(Yiτ+1 ∈ Îiτ+1|τ (α)).

2 Test of valid nominal coverage (reject means interval not wide enough)

H0i : E[Ĥ(`)
i,τ+1|τ (α)] ≥ (1− α) versus H1i : E[Ĥ(`)

i,τ+1|τ (α)] < (1− α).

3 Test of sharp nominal coverage (reject means interval too wide)

H0i : E[Ĥ(`)
i,τ+1|τ (α)] ≤ (1− α) versus H1i : E[Ĥ(`)

i,τ+1|τ (α)] > (1− α).

4 Unconditional Coverage test combining the previous ones.

5 Serial Independence test against binary first-order Markov dependence.

6 Conditional Coverage test, combining Unconditional Coverage and
Independence tests.

35/62



Table: Proportion of rejections when testing for valid nominal coverage (left
panel) and for sharp nominal coverage (right panel). Significance level δ. Capping
κT = 0.25.

valid nominal coverage test sharp nominal coverage test
α = 0.1 δ = 0.1 δ = 0.05 δ = 0.01 δ = 0.1 δ = 0.05 δ = 0.01
` = 126 0.14 0.12 0.09 0.24 0.14 0.03
` = 252 0.16 0.13 0.08 0.31 0.21 0.09
α = 0.05 δ = 0.1 δ = 0.05 δ = 0.01 δ = 0.1 δ = 0.05 δ = 0.01
` = 126 0.29 0.19 0.13 0.01 0.00 0.00
` = 252 0.30 0.20 0.14 0.06 0.01 0.00

Table: Proportion of rejections when considering the two-sided test. Significance
level δ. Capping κT = 0.25.

unconditional coverage test
α = 0.1 δ = 0.1 δ = 0.05 δ = 0.01
` = 126 0.27 0.19 0.08
` = 252 0.34 0.26 0.13
α = 0.05 δ = 0.1 δ = 0.05 δ = 0.01
` = 126 0.19 0.16 0.10
` = 252 0.21 0.16 0.13
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Table: Proportion of rejections when testing against serial dependence (left
panel) and in the combined problem (right panel). Significance level δ. Capping
κT = 0.25.

independence test conditional coverage test
α = 0.1 δ = 0.1 δ = 0.05 δ = 0.01 δ = 0.1 δ = 0.05 δ = 0.01
` = 126 0.32 0.22 0.08 0.37 0.22 0.12
` = 252 0.40 0.36 0.19 0.49 0.42 0.26

independence test conditional coverage test
α = 0.05 δ = 0.1 δ = 0.05 δ = 0.01 δ = 0.1 δ = 0.05 δ = 0.01
` = 126 0.28 0.20 0.06 0.28 0.21 0.12
` = 252 0.37 0.27 0.17 0.36 0.27 0.22
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Summary

Based on GDFM techniques, we are able to construct nonparametric and
model-free quantile-related one-step ahead prediction intervals for returns
incorporating dynamic information about volatilities while escaping the
curse of dimensionality.

But there’s more in the two-step approach than interval predition!

37/62



Analyzing the Market Volatility Shocks

At the end of Step 1 of our two-step factor model approach, we had disentangled
common and idiosyncratic shocks eit and vit , estimated by widehateit and v̂it ,
respectively.

For simplicity, let us drop hats whenever we can.

The eit ’s are the residuals we need for an analysis of the volatility of the
level-common components. They are a reduced-rank process (dimension n,
driven by q-dimensional noise).

The vit ’s are the residuals we need for an analysis of the volatility of the
level-idiosyncratic components.

Instead of aggregating them into sit := eit + vit (ŝit := êit + v̂it)—which was fine
for prediction purpose, let us keep both of them, and define, as proposed by Engle
and Marcucci (2006),

hcom
it := log e2

it hidio
it := log v2

it .
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hcom
it := log e2

it and hidio
it := log v2

it

... two panels of volatility proxies, thus, impacted by, and hence containing
information on, the same market volatility shocks we are inerested in.

Those two (large) panels of residuals have to be analyzed jointly, as one 2n × T
panel with two n × T subpanels.
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Panels with block structure have been described and studied in Hallin and Liška
(Journal of Econometrics 2011).

For ease of presentation, consider the following example of a panel composed of
two blocks: nF=96 French economic series {X F

it } and nG=114 German ones
{XG

jt }; the joint panel thus has (n= 210) series.
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Subpanel spectral eigenvalues (two subpanels or
blocks)
Behavior of 10 largest dynamic eigenvalues (averaged over frequencies):

(a) France; (b) Germany; (c) France and Germany.

20 50 100 150 20020 50 100 150 200 20 50 100 150 200

panel Y panel Z panel X 

n n n
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Three distinct analyses can be conducted, based on

two marginal factor models, with qF and qG common shocks, respectively

X F
it = χF

it + ξFit

XG
jt = χG

jt + ξGjt

a global factor model, with q common shocks

X F
it = χFG

it + ξFGit

XG
jt = χFG

jt + ξFGjt

This provides three decompositions of the Hilbert space H spanned by the panel
into

an F-common space HχF and an F-idiosyncratic space HξF := (HχF )⊥

a G-common space HχG and a G-idiosyncratic space HξG := (HχG )⊥

an FG-common space HχFG and an FG-idiosyncratic space HξFG := (HχFG )⊥
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Clearly, HχF ⊆ H
χ
FG and HχG ⊆ H

χ
FG so that max(qF , qG ) ≤ q ≤ qF + qG .

We thus have two decompositions into four mutually orthogonal components:

X F
it =

χFG
it︷ ︸︸ ︷

φF ;it + ψF ;it + ζF ;it +ξFGit , i ∈ N, t ∈ Z︸ ︷︷ ︸
χF
it

︸ ︷︷ ︸
ξFit

and

XG
jt =

χGF
jt︷ ︸︸ ︷

φG ;jt + ψG ;jt + ζG ;jt +ξGFjt , j ∈ N, t ∈ Z.︸ ︷︷ ︸
χG
jt

︸ ︷︷ ︸
ξGjt
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φF ;it is F- and G-common: strongly common

ψF ;it is F-common but G-idiosyncratic: weakly F-common

ζF ;it is F-idiosyncratic but G-common: weakly F-idiosyncratic

ξFGit is FG-idiosyncratic: strongly idiosyncratic

φG ;it is F- and G-common: strongly common

ψG ;it is G-common but F-idiosyncratic: weakly G-common

ζG ;it is G-idiosyncratic but F-common: weakly G-idiosyncratic

ξGFit is FG-idiosyncratic: strongly idiosyncratic
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Statistical analysis:

identification of qF , qG and q via the Hallin-Liška (JASA 2007) method

consistent reconstruction of φF ;it , ψF ;it , etc. and estimation of their
contributions to the total sum of squares as in Hallin and Liška (Journal of
Econometrics 2011)

45/62



In our case,

the role of France is played by the {hcom
it }’s (originating from the

level-common shocks),

the role of Germany by the {hidio
it }’s originating from the level-idiosyncratic

shocks).

The strongly common, weakly common and weakly idiosyncratic components all
qualify as “market-driven volatilities".

In the S&P100 case below, q = qcom = qidio = 1 is identified. Then, the
decomposition only has strongly common components and strongly idiosyncratic
ones. Market volatility is univariate (one shock).

We illustrate the method by an application to the S&P100 series : n = 90 series
[some stocks were not traded, and were removed from the analysis] of daily
log-returns observed between January 2000 and September 2013 (T =3457).
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Step 1. A factor model analysis of the levels Yit

• a number q = 1 of dynamic factors is identified via the Hallin-Liška (JASA
2007) method

• the one-sided method of Forni-Hallin-Lippi-Zaffaroni (Journal of Econometrics
2015) yields (a reconstruction of) the level-common components Xit , their shocks
eit , and the level-idiosyncratic Zit

• univariate AR models (orders selected via AIC or BIC) are fitted to the Zit ’s,
yielding residuals vit

• the volatility proxies {hcom
it := log e2

it} are computed from the level-common
shocks eit

• the volatility proxies {hidio
it := log v2

it} are computed from the level-idiosyncratic
shocks vit

47/62



Step 1.

Estimated market shocks ût on returns, period 2000–2013.

00 01 02 03 04 05 06 07 08 09 10 11 12 13
−10

−5

0

5

10

time

Note
• the dot–com bubble, the Enron (late 2001) and Worldcom (mid–2002) scandals
• the 2003 Iraq war
• the Great 2008–2009 Financial crisis starting with Lehman Brothers bankruptcy
(September 2008);
• the 2010–2012 euro sovereign bond crisis.

The largest shocks over the period, by far, are those related with the 2008–2009
financial crisis.
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Step 1.
One can compute the ratios between the sum of the (empirical) variances of the
estimated common components XT

t and the sum of the (empirical) variances of
the observed returns:

R2
Y .market :=

∑n
i=1

∑T
t=1(XT

it )2∑n
i=1

∑T
t=1(Yit)2

. ≈ 0.36
and also

R2
Yi .market :=

∑T
t=1(XT

it )2∑T
t=1(Yit)2

, i = 1, . . . , n and R2
Yt .market :=

∑n
i=1(XT

it )2∑n
i=1(Yit)2 , t = 1, . . . ,T
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Histogram for the proportions R2
Yi .market of variance explained by the market shocks to returns across the panel.
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Time series of the proportions R2
Yt .market of variance explained by

the market shocks to returns at time t.
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Step 2. A 2-block factor model analysis of the volatility proxies {hcom
it } and {hidio

it }

Evidence of factor structure in the volatility proxy panels.
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Ten largest dynamic eigenvalues, averaged over frequencies, computed for panels of increasing sizes:
45 ≤ nj ≤ n = 90 for the level–common and level–idiosyncratic volatility panels, and 135 ≤ nj ≤ 2n = 180
for the joint volatility panel.

51/62



Step 2.

A 2-block factor model analysis of the volatility proxies {hcom
it } and {hidio

it }

• the following numbers of dynamic factors are identified via the Hallin-Liška
(JASA 2007) method: qcom = 1, qidio = 1, q = 1.

• This implies that a unique volatility-strongly-common shock is driving both
the level-common hcom

it ’s and the level-idiosyncratic hidio
it ’s: no weakly common nor

weakly idiosyncratic components here, which greatly simplifies the analysis (a
standard FHLZ approach to the 2n-dimensional panel is sufficient)

• That common shock thus qualifies as the market volatility shock, impacting
both the level-common and level-idiosyncratic components of the S&P100 panel,
with different strengths, though
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Estimated market shock on volatilities, period 2000–2013.

Note

• 01 the dotcom bubble
• 03 Iraq war
• 09 is the Great Financial Crisis (which started in 2008)
• 11-12 is the Eurocrisis

53/62



The overall contribution of market shocks to the variances of the volatility proxies
{hcom

it } and {hidio
it } can be evaluated by means of the ratios

R2
com.market :=

∑T
t=1

∑n
i=1(φcom;it)

2∑T
t=1

∑n
i=1(hcom

it )2
≈ 0.60

and

R2
idio.market :=

∑T
t=1

∑n
i=1(φidio;it)

2∑T
t=1

∑n
i=1(hidio

it )2
≈ 0.17

For each individual stock i , a measure of the same impact is

R2
hcom
i .market :=

∑T
t=1(φcom;it)

2∑T
t=1(hcom

it )2
and R2

hidio
i .market :=

∑T
t=1(φidio;it)

2∑T
t=1(hidio

it )2
, i = 1, . . . , n;

while their evolution through time is captured by

R2
hcom
t .market :=

∑n
i=1(φcom;it)

2∑n
i=1(hcom

it )2 and R2
hidio
t .market :=

∑n
i=1(φidio;it)

2∑n
i=1(hidio

it )2 , t = 1, . . . ,T .
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Histograms for the proportions of variances explained by the market volatility shocks across the panel: R2
hcom
i

.market

(left) and R2
hidio
i

.market
(right).

55/62



00 01 02 03 04 05 06 07 08 09 10 11 12 13
0

5

10

15

20

time

Time series of the estimated proportions R2
hcom
t .market (black) and R2

hidio
t .market

(red) of variances explained by the

market volatility shocks.

56/62



The transfer or impulse–response functions describing the dynamic loading, by the
volatility proxies, of the market volatility shocks. For each stock i , those functions
take the form of scalar filters (one for hcom

it , another one for hidio
it ), plotted

sequences of coefficients associated with the various lags.
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Median, maximum, and minimum of the distribution of impulse–response functions of volatilities to a one–standard-
deviation market volatility shock, that is, the sequence of loading coefficients divided by the standard error of the
shocks, for level–common (left) and level–idiosyncratic (right) volatilities, respectively.
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Impulse–response functions of volatilities to a one–standard-deviation market volatility shock, that is, the sequence
of loading coefficients divided by the standard error of the shocks, for level–idiosyncratic volatilities of selected stocks
from the Financial (left) and Technology (right) sectors, respectively.
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Finally, to conclude, we turn to the analysis, for a few selected stocks, of the
market-driven volatilities, which we define (hats omitted) as

χe2;it := exp(φcom;it+h̄com
i ), χv2;it := exp(φidio;it+h̄idio

i ), i = 1, . . . , n, t = 1, . . . ,T ,

where h̄com
i and h̄idio

i stand for empirical means.
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Kernel-smoothed cross–sectional averages of market volatilities. The bandwidth used corresponds to 3 weeks of
trading (15 days).
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Market volatilities – Financial sector.
level–common volatility level–idiosyncratic volatility
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Estimated market volatilities for five selected stocks from the Financial sector, along with their smoothed versions
(black solid line).
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Market volatilities – Technology sector.
level–common volatility level–idiosyncratic volatility
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Estimated market volatilities for five selected stocks from the Technology sector, along with their smoothed versions
(black solid line).
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Conclusions and perspectives

• Dynamic factor methods can be applied to volatilities in high-dimensional time
series (in large panels of stocks)

• contrary to most existing methods for the analysis of volatility, they are fully
nonparametric and model-free: curse of dimensionality turns into a blessing!

• the decompositions between “level-common” and “level-idiosyncratic” on one
hand, between “volatility-common” and “volatility-idiosyncratic” in general do not
coincide: common volatility shocks quite significantly do affect level-idiosyncratic
components as well as the level-common one;

• dynamic portfolio optimization should take into account the market impact on
the volatilities of the level-idiosyncratic components a well as their impact on the
level-common ones; in general, the risk associated with level-idiosyncratic
components cannot be fully diversified away, while the risk associated with
level-common partially can

This approach opens the door to volatility prediction and portfolio
optimization without curse of dimensionality nor oversimplified modeling in
large panels (high-dimensional time series) of stock returns.
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